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Abstract. Nonlocal investigations are presented for exciton-photon coupling in three-dimensional nano-
spherical-particle photonic crystals in compound lattices for a tailored dielectric environment to optimize
the optical properties of nano particles. The photonic band structure can be modified by tuning the nano
particle size and the distance between two interlacing identical face-centered sub-lattices making up the
photonic crystal lattice. A complete photonic band gap with a gap-midgap ratio as large as 40.82% has
been found in the wurzite structure under the current investigation.

PACS. 42.70.Qs Photonic bandgap materials (for photonic crystal lasers, see 42.55.Tv) – 73.63.Kv Quan-
tum dots – 41.20.-q Applied classical electromagnetism

Photonic crystals (PC) have attracted much attention in
the last decade due to their unique electromagnetic (EM)
properties and potential applications [1–4]. Conventional
PCs consist of periodical dielectric arrays, which are nor-
mally referred to as passive PCs. One of their important
properties is to mould and control the flow and distribu-
tion of the light at its most microscopic level. The syn-
ergetic interplay in these PCs between the microcavity
resonances of composite particles and the Bragg scatter-
ing resonances of the dielectric arrays lead to the forma-
tion of a photonic band gap (PBG), i.e., a range of fre-
quencies for which no propagating EM modes are allowed.
Due to the presence of the PBG in the dispersion relation
of the EM field, the photonic density of states (DOS) in
PCs is suppressed over a certain frequency window. These
features open the possibility for many important techno-
logical applications including lossless PC waveguides [4],
low-threshold PC lasers [5], and high-Q photonic nanocav-
ities [6].

Control of spontaneous emission lies at the heart of
quantum optics. It has been well established over the
years that the spontaneous emission of an excited atom
depends not only on the properties of the excited atom,
but also on the nature, i.e., the density of EM modes,
of the surrounding environment [7]. For novel quantum-
optics applications, a suitably tailored dielectric environ-
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ment is required, where the vacuum fluctuations can be
manipulated. PCs are exactly this, as they strongly mod-
ify the vacuum fluctuations, and accelerate or decelerate
the decay of the emitted light [8]. There has been con-
siderable experimental work reported recently on excited
quantum dots (QDs) embedded in optical PCs by utilizing
the properties of individual QD as well as the “colored”
EM reservoir within the PCs [9–11]. Many new physical
phenomena have been observed in these systems, such as
the suppression and enhancement of spontaneous emis-
sion, anomalous superradiant emission, as well as vacuum
Rabi splitting. For example, the light emission from a QD
within an inverse opal PC is clearly modified [10].

A periodic QD array can form a photonic crystal due
to Bragg scattering of optical waves in the structure. Op-
tical properties of quantum wells were studied [12–14].
By state-of-the-art self-assembly techniques, Vlasov and
coworkers have successfully fabricated high-quality three-
dimensional (3D) QD PCs recently, and the promising
experimental data indicated a complete PBG at optical
wavelengths [15]. An interesting question has therefore
arisen, namely whether we can utilize the QD array as
a PC which in turn controls the light emission of the com-
posite QDs.

As mentioned earlier, the PBG of a conventional PC is
the result of the microcavity resonances of composite par-
ticles and the Bragg scattering resonances of the dielec-
tric arrays. However, the EM field in the QD PCs is fur-
ther modulated by the periodical coupling between light
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and QD excitations [16–18]. Due to the quantum confine-
ment effect, an exciton, a quantum of electronic energy,
can be optically excited in these materials by the propa-
gating EM waves. When a photon and an exciton mix in
the dispersion-crossover region, a combined quasi-particle
called an exciton polariton is formed [19]. For example,
Ivchenko et. al. have studied exciton polaritons in one-
dimensional (1D) PCs [14]. It was found that PBG can
exist even in the absence of a periodically modulated di-
electric index. When a photon is emitted from an excited
QD in a QD PC, complex quantum-optics phenomena are
expected. As a consequence of the formation of an ex-
citon polariton, the photon DOS will be changed, which
will cause the evolution of the excited QD, which in its
turn will further modify the photon DOS again, and the
process iterates until dynamic equilibrium is achieved.

Before an investigation of the complex system consist-
ing of excited QDs in QD PCs, it is useful to first study the
photonic band structure of QD PCs with exciton polari-
tons. After understanding the photonic band structures,
one can further consider using such a PC to control the
optical properties of the QDs. This question has been the-
oretically discussed by Fu and coworkers [20]. However,
they did not find a complete PBG in either a primitive
cubic lattice or a face-centered cubic (fcc) lattice. In this
paper, we try to find a full PBG in 3D PC structures
based on semiconductor-quantum-dot arrays in compound
lattices. A complete PBG is obtained when the QDs are
arranged in a wurtzite lattice. Moreover, we will formu-
late a complete theory about the polariton dispersion and
optical spectrum of the QD PC in a general compound
lattice.

The outline of this paper is as follows. Firstly, the dis-
persion equation for exciton polaritons in a 3D compound
lattice will be derived. The compound structure is com-
posed by two interlacing identical sublattices. One sublat-
tice consists of QDs whose radii are R1, the second sub-
lattice have radii R2. The photonic band structure of the
PCs in compound lattices is then calculated. Finally, the
numerical results are analyzed and discussed in compari-
son with the relevant results in reference [20].

We start from the Maxwell equations (without free
charges and the current due to spatial transfer of free
charges)

∇× [∇× E(r)] =
(ω

c

)2

D(r) ,

∇ · D(r) = 0. (1)

The excitonic states in a single QD are quasi-zero-
dimensional due to the quantum-confinement effect and
we consider a narrow frequency region near a particular
exciton energy level, where the dielectric response to an
electromagnetic wave is nonlocal. And the nonlocal rela-
tionship between D and E is taken in the form [21]

D(r) = εbE(r) + 4πP exc(r), (2)

where εb is the dielectric index of the QD. To simplify
the Maxwell equations, we neglect the tiny difference be-
tween dielectric indices of the well and barrier materials

[14]. This assumption is realistic for many semiconduc-
tor materials such as III-V GaAs/AlxGa1−xAs QDs. The
dielectric polarization is given by

4πP exc(r) = T (ω)

[∑
a

Φ1,a(r)
∫

Φ1,a(r′)E(r′)dr′

+
∑

a+∆a

Φ2,a+∆a(r)
∫

Φ2,a+∆a(r′)E(r′)dr′
]

. (3)

Here a are the sublattice primitive translation vectors,
and ∆a is the vector describing the distances between the
two identical sublattices. Φi,a(r) = Φi,0(r − a)(i = 1, 2)
is the envelope function of an exciton excited in the ath
QD. Other terms are

T (ω) = 2π
εbωLT ω0a

3
B

ω2
0 − ω2

, (4)

ωLT and aB are the exciton longitudinal-transverse split-
ting and Bohr radius in the corresponding bulk semicon-
ductor, ω0 is the QD’s exciton resonance frequency. Here,
we assume the same resonant frequencies for two types of
QDs with different sizes based on the fact that the QDs
used in the current PC are relatively large. For instance,
for QD PCs composed of GaAs QDs embedded in AlGaAs,
the relative difference between excitonic resonant frequen-
cies is of the order of 10−4 when we change the QD radius
from 110 to 150 nm. In the following, we denote the com-
posite quantum dots as nano spherical particles (NSPs)
because of the large dot size. In addition, the distance
between NSPs in the PC is large in order to localize the
exciton. Thus, we neglect the overlap of the exciton en-
velope functions Ψi,a and Ψj,a′(i, j = 1, 2) with a �= a′

and excitons excited in different NSPs are assumed to be
coupled only via the EM field.

Notice that the non-radiative damping rate of the ex-
cited exciton state is neglected in equation (4), which is
valid for frequencies away from the excitonic resonance
frequency ω0, where the non-radiative damping rates are
very small. Because we just consider the frequency above
ω0 (see discussions below), the non-radiative damping rate
can be reasonably neglected from the dielectric function.
This is more clearly seen in the photonic band structure
around the PBG of interest above ω0 (see Figs. 2–4 be-
low). However, when the frequencies are very close to ω0,
this assumption is no longer valid. Another thing needed
to note is that the small non-radiative damping rate only
has a very small effect on the band structure. It clearly af-
fects both the electric field distribution and the spectrum.

It follows from equation (2) that divE =
−(4π/εb)divP exe, which allows us to rewrite the
first equation (1) as

∇2E(r) + k2E(r) = −4πk2
0

{
P (r) +

1
k2

∇ [∇ · P (r)]
}

,

(5)
where k0 = ω/c, k = k0nb = ωnb/c and nb =

√
εb.
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D6×6 =

⎛
⎜⎜⎜⎜⎜⎝

1 − R1,11 −R1,12 −R1,13 −R2,11 −R2,12 −R2,13

−R1,21 1 − R1,22 −R1,23 −R2,21 −R2,22 −R2,23

−R1,31 −R1,32 1 − R1,33 −R2,31 −R2,32 −R2,33

R3,11 R3,12 R3,13 R4,11 − 1 R4,12 R4,13

R3,21 R3,22 R3,23 R4,21 R4,22 − 1 R4,23

R3,31 R3,32 R3,33 R4,31 R4,32 R4,33 − 1

⎞
⎟⎟⎟⎟⎟⎠

. (17)

We substitute equations (3) into (5) and expand the
vector function Eq(r) in the Fourier series

Eq(r) =
∑

g

ei(q+g)·rEq+g, (6)

g are the reciprocal lattice vectors. The integral in equa-
tion (3) can be transformed into

∫
Φ1,a(r)E(r)dr = eiq·a ∑

g

I1,q+gEq+g ≡ eiq·aΛ1

∫
Φ2,a+∆a(r)E(r)dr = eiq·a ∑

g

I2,q+gEq+g ≡ eiq·aΛ2,

(7)

where

I1,q+g =
∫

Φ1,0(r)ei(q+g)·rdr

I2,q+g =
∫

Φ2,0(r)ei(q+g)·rei(q+g)·∆adr. (8)

The sums
∑

a Φ1,a(r)eiq·a and
∑

a+∆a Φ2,a+∆a(r)eiq·a
satisfy the translational symmetry and can be presented
as

∑
a

Φ1,a(r)eiq·a =
∑

g

ei(q+g)·r I∗1,q+g

v0

∑
a+∆a

Φ2,a+∆a(r)eiq·a =
∑

g

ei(q+g)·r I∗2,q+g

v0
, (9)

where v0 is the volume of the primitive unit cell. The
system of linear equations for the space harmonics Eq+g

can be written in the form

[
|q + g|2 − k2

]
Eq+g =

k2
0T (ω)

(
Λ1

I∗1,q+g

v0
+ Λ2

I∗2,q+g

v0

) [
1 − 1

k2
(q + g)2

]

= k2
0T (ω)Ŝ

(
Λ1

I∗1,q+g

v0
+ Λ2

I∗2,q+g

v0

)
. (10)

Here Ŝ(Q)Λ1 is a vector with the components SαβΛ1,β

and Ŝ(Q)Λ2 is a vector with the components SαβΛ2,β. We
define Sαβ = δαβ − QαQβ

k2 , where α, β = x, y, z, δαβ is the
Kronecker symbol. Dividing both parts of equation (10) by[
|q + g|2 − k2

]
, multiplying them by I1,q+g and summing

over g:

∑
g

I1,q+gEq+g = Λ1

=
k2
0T (ω)
v0

∑
g

Ŝ(q + g)
|q+g|2−k2

(|I1,q+g|2Λ1 + I1,q+gI∗2,q+gΛ2

)

= R̂1(ω, q)Λ1 + R̂2(ω, q)Λ2, (11)

where

R̂1(ω, q) =
k2
0T (ω)
v0

∑
g

Ŝ(q + g)

|q + g|2 − k2
|I1,q+g|2

R̂2(ω, q) =
k2
0T (ω)
v0

∑
g

Ŝ(q + g)
|q + g|2 − k2

I1,q+gI∗2,q+g .(12)

Dividing both parts of equation (10) by
[
|q + g|2 − k2

]
,

multiplying them by I2,q+g and summing over g:

∑
g

I2,q+gEq+g = Λ2

=
k2
0T (ω)
v0

∑
g

Ŝ(q + g)
|q + g|2 − k2

(|I2,q+g|2Λ2+I2,q+gI∗1,q+gΛ1

)

= R̂3(ω, q)Λ1 + R̂4(ω, q)Λ2, (13)

where

R̂3(ω, q) =
k2
0T (ω)
v0

∑
g

Ŝ(q + g)
|q + g|2 − k2

I2,q+gI∗1,q+g

R̂4(ω, q) =
k2
0T (ω)
v0

∑
g

Ŝ(q + g)
|q + g|2 − k2

|I2,q+g |2. (14)

We arrive at the vector equations
(
I − R̂1(ω, q)

)
Λ1 = R̂2(ω, q)Λ2(

I − R̂4(ω, q)
)

Λ2 = R̂3(ω, q)Λ1, (15)

where I is a 3 × 3 unit matrix. We can rewrite the above
equations as

D6×6X = 0, (16)

where

see equation (17) above
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X is a column vector that can be transposed as

(Λ1,x, Λ1,y, Λ1,z, Λ2,x, Λ2,y, Λ2,z)T . (18)

The exciton-polariton dispersion ω(q) satisfies the equa-
tion

Det‖D‖ = 0. (19)

Consider NSPs with radius R, where R � aB so that
one may neglect the distortion of internal motion of the
electron-hole pair in the exciton and the envelope function
of an exciton can be approximated by the exciton ground
state wavefunction [20,22]

Ψa(re, rh)=
1

|r − a|√2πR
sin

(
π|r − a|

R

)
1√
πa3

B

e
− re−rh

aB ,

(20)
where

r =
mere + mhrh

me + mh
(21)

is the exciton center of mass. So we have

I1,Q = π

(
2R1

aB

)3/2 sin |Q|R1

|Q|R1 [π2 − (|Q|R1)2]

I2,Q = eiQ·∆aπ

(
2R2

aB

)3/2 sin |Q|R2

|Q|R2 [π2 − (|Q|R2)2]
.(22)

We then obtain

R1,αβ (Ω, K) =
16
πv0

ωLT R3
1

ω0

ω2

ω2 − ω2
0

σ11,αβ(Ω, K)

R2,αβ (Ω, K) =
16
πv0

ωLT (R1R2)3/2

ω0

ω2

ω2 − ω2
0

σ12,αβ(Ω, K)

R3,αβ (Ω, K) =
16
πv0

ωLT (R1R2)3/2

ω0

ω2

ω2 − ω2
0

σ21,αβ(Ω, K)

R4,αβ (Ω, K) =
16
πv0

ωLT (R2)3

ω0

ω2

ω2−ω2
0

σ22,αβ(Ω, K), (23)

where

σst,αβ(Ω, K) =
∑

b

f (|b + K|Rs) f (|b + K|Rt)Sαβ(b + K)
Ω2 − Ω2(b + K)

×ei(s−t)(b+K)·∆a ,

f(x) =
π2 sinx

x(π2 − x2)
Ω =

ω

ω0

Ω(Q) =
c|Q|
ω0nb

, (24)

where α, β = x, y, z, and s, t = 1, 2. Now we are ready to
calculate the EM dispersion relation. For a better compar-
ison, we consider similar parameters discussed in reference
[20]. We assume ωLT = 5.0 × 10−4ω0 and set the sublat-
tice’s lattice constant a in the unit of aBr,

aBr =
cπ

ω0nb
. (25)

Fig. 1. Schematic of (a) a face-centered cubic lattice and (b)
a wurtzite lattice.

We consider an fcc sublattice (schematically shown in
Fig. 1a) since its Brillouin zone is most sphere-like and
favourable for the overlapping of band gaps at various
Brillouin-zone-boundary wave vectors [23]. In this lattice,
the volume of the primitive unit cell is v0 = a3/4. For the
fcc Bravais lattice with conventional cubic cell of size a, its
reciprocal lattice is body-centered cubic, and the primitive
reciprocal lattice vectors are [24]

b1 =
2π

a
(y0 + z0 − x0) , b2 =

2π

a
(z0 + x0 − y0) ,

b3 =
2π

a
(x0 + y0 − z0) . (26)

We calculate the photonic band structures for this struc-
ture along important symmetry lines in the Brillouin zone,
XU − UL − LΓ − ΓX − XW − WK (in unit of 2π/a),

Γ = (0, 0, 0) , X = (0, 0, 1) , L =
(

1
2
,
1
2
,
1
2

)
,

W =
(

1
2
, 0, 1

)
, U =

(
1
4
,
1
4
, 1

)
, K =

(
3
4
, 0,

3
4

)
.(27)

To validate the above equations and our calculating pro-
grams, we calculate the photonic band structures in
two different conditions. One is an fcc sublattice of
∆a = a(1/2, 0, 0), and the other is also fcc but ∆a =
a(1/2, 1/2, 1/2). They are equivalent in structure and the
same results are obtained.

We first consider a NSP PC in a rock-salt lattice whose
sublattices are composed of two kinds of NSPs, one with
radius a/4 and the other a/5. The photonic band structure
is shown in Figure 2 with the solid line. Up to 19×19×19
plane waves have been used in the calculations, and a good
convergence is achieved. Like the passive 3D fcc PC [3],
our rock-salt lattice does not have a complete PBG. How-
ever, there is a large gap (from 0.365 to 0.384) between
band 5 and 6 throughout most of the Brillouin zone. The
distribution of mode frequencies around the W point pre-
vents the gap from being complete. The partial gap is
most prominent along the Λ (Γ -L) line in the q space. For
comparison, the dispersion relationship of the fcc lattice
with homogeneous QDs is also plotted [20]. Due to the
change in structural symmetry, many splits appear in the
band structure of our rock-salt lattice. Nevertheless, the
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Fig. 2. Energy dispersion relation. a = 0.95aBr and ωLT /ω0 =
5×10−4. Solid line: a rock-salt lattice consisting of two kinds of
nano-spherical particles with their radius equal to a/4 and a/5,
respectively. Dotted line: a face-centered cubic lattice consist-
ing of one kind of nano-spherical particle with radius R = a/4.

two band structures are sufficiently similar that a com-
plete PBG is inhibited because of a symmetry-induced
degeneracy at the W point.

In Figure 3 we show the photonic band structures
of two different rock-salt lattices. The following values
are assumed for numerical calculations: a = 0.95aBr,
ωLT /ω0 = 5 × 10−4 and ∆a = (1/2, 0, 0)a. The dotted
line indicates the lattice with R1 = a/4 and R2 = a/5,
while the solid line is for R1 = a/4 and R2 = a/8. These
two lattices (identical except different NSP radii) do not
have overall PBGs. In the first lattice, we find a partial
band gap from 0.365 to 0.384. A large gap from 0.339
to 0.364 between band 5 and 6 throughout most of the
Brillouin zone exists in the second lattice. In terms of the
conclusion obtained in reference [20] that the dispersion
relationship vertically shifts up along the (ω − ω0)/ωLT -
axis following the decrease of a/aBr ratio, we further show
here that the partial gap vertically shifts up following the
increase of R2. It is thus clearly concluded that we can
undoubtedly change the photonic band structure by mod-
ifying the radius of NSPs in one sublattice.

Because of a symmetry-induced degeneracy at the W
point, a complete PBG is inhibited in the above lattices.
We therefore need to find ways to remove the degeneracy
by changing the symmetry of the lattice. The next struc-
ture we try is a wurtzite lattice (schematically shown in
Fig. 1b), where, like the diamond structure, all the bands
along the symmetry line from W to X are twofold de-
generate. This favours the opening of a gap between the
second and third bands [3]. Figure 4 shows the photonic
band structure of a wurtzite lattice, with R1 = 0.25a and
R2 = 0.18a. A complete PBG indeed appears clearly from
0.156 to 0.236, with the forbidden gap-midgap ratio of
up to 40.82%. Several other important properties are also
observed. First, there are extraordinarily flat bands, such
as the second lowest band along the WK line, therefore
the group velocity of these bands is extremely small. This
property may be used for the development of efficient op-

Fig. 3. Energy dispersion relations of two different rock-salt
lattices consisting of two kinds of nano-spherical particles. The
following values are assumed for the numerical calculation: a =
0.95aBr , ωLT /ω0 = 5× 10−4 and ∆a = (1/2, 0, 0)a. Solid line:
rock-salt lattice with R1 = a/4, R2 = a/8; Dotted line: rock-
salt lattice with R1 = a/4, R2 = a/5.

Fig. 4. Energy dispersion relation of a wurtzite structure con-
sisting of nano-spherical particles. The following values are as-
sumed for the numerical calculation: a = 0.95aBr , ωLT /ω0 =
5 × 10−4, ∆a = (1/4, 1/4, 1/4)a, R1 = 0.25a and R2 = 0.18a.
The grey field indicates the forbidden gap.

tical devices [3]. Secondly, several bands along the ΓX line
are doubly degenerate, which is related to the symmetry
of the lattice structure. Because EM waves are forbidden
to propagate in any direction in the PBG, it can be ex-
pected that because of the intercoupling of light and NSPs
[12,13], our NSP PC structure will undoubtedly enhance
many novel quantum-optics phenomena such as photon
localization, spontaneous emission and zero-point fluctu-
ations [2].

Comparison between the photonic band structure of
the wurtzite lattice in Figure 4 and that of the rock-salt
lattice in Figure 3 clearly indicates a significant difference
in the opening of the PBG. This phenomenon can be in-
terpreted by the fact that the difference in the distance be-
tween two interlacing lattices leads to the variation of the
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structural symmetry. We find that the opening of the band
gap doesn’t depend on the changes in the NSP radius. On
the contrary, it depends on the distance between two in-
terlacing sublattices. Hence, by modifying the distance to
change the structural symmetry, we can effectively tune
the photonic band structure for better performances of
optical devices.

Coevorden et al. calculated the photonic band struc-
ture of fcc atomic lattices where the permeability, related
to resonance frequency, was modelled by delta functions
centered at the atomic sites [25]. A complete PBG was
obtained in the fcc atomic lattices. The dielectric index is
normally modelled by the resonance structure due to the
light-matter interaction. The dielectric index is expected
to be spatially distributed for a realistic composite parti-
cle. A 100-nm NSP under investigation contains more than
106 atoms in our NSP PC so that the dielectric index is
expressed through the envelope function of the NSP exci-
ton Φ(r). Moreover, the excitation of the exciton by the
incident EM wave is included, i.e., the dependence of the
dielectric index on the EM field, equation (3). We therefore
see a significant difference in the photonic band structures
of atomic and the NSP lattices. The complete PBG of the
NSP PC is only obtained from complicated wurtzite lat-
tices; it is not present in simple structures including prim-
itive cubic and fcc lattices. In addition, the PBG in the
NSP PCs is above the resonance frequency ω0 (based on
which the damping rate of the exciton state is neglected,
see above), while it is almost below ω0 in atomic lattices.
Recently, many interesting results concerning NSP PC has
been obtained [16–18].

In summary, we have studied the photonic band struc-
ture of the nano-spherical-particle photonic crystals in
compound lattices and derived the dispersion equation us-
ing a plane-wave expansion method. The nano-spherical-
particle photonics crystal can provide a tailored dielectric
environment to optimize the optical properties of nano-
spherical particles, such as the spontaneous emission. We
have demonstrated for what we believe to be the first time
that there is a complete photonic band gap with a large
gap-midgap ratio in a nano-spherical-particle wurtzite lat-
tice. By suitably choosing not only the nano-spherical par-
ticles’ radius but also the distance between two interlacing
sublattices, we can change the band-gap structure of this
material.

This work is partially supported by Chinese National Key
Research Special Fund, Chinese National Science Foundation
(60221502 and 60476040), Key fund of Chinese National Sci-
ence Foundation (10234040), Key Fund of Shanghai Science
and Technology Foundation (02DJ14066).
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